Schoolof
Engineering

FEM and Elasticity Theory Gebril $\mathfrak{E l - F a l l a h ~}$

EG3111 - Finite $\mathcal{E l}$ ement Analysis and Design

2a. Recap on Deformation - Brittle Materials from EG2111

Brittle fracture in mild steel
http://people.virginia.edu/~Iz2n/mse209/Chapter8.pdf

2a. Recap on Deformation - Ductile Materials

Total strain, $\boldsymbol{\epsilon}=\epsilon_{e}+\epsilon_{p}=\frac{\sigma_{y}}{E}+\epsilon_{p}$

Cup-and-cone fracture in Al
http://people.virginia.edu/~Iz2n/mse209/Chapter8.pdf

2a. PDE for 1D elasticity

When a load is applied, a point at position x moves to position $x+u$.
The solution to this 1D elasticity problem is the displacement field $\mathbf{u}(\mathbf{x})$.

2a. PDE for 1D elasticity

Three conditions to satisfy:

* Compatibility of strains
* Force balance
* Constitutive law

2a. Compatibility of strain (recap from EG2111)

In x-direction

- Normal strain in x-direction ϵ_{x} is $\quad \epsilon_{x}=\frac{d u}{d x}$
change in length over original length

2a. PDE for 1D elasticity

Three conditions to satisfy:

* Compatibility of strains

$$
\epsilon_{x}=\frac{d u}{d x}
$$

* Force balance
* Constitutive law

2a. Force balance

Consider an infinitesimal element subject to an internal body force per unit volume f_{x}, e.g. an inertial force such as gravity.

Force balance
(1) (2)

$$
\begin{aligned}
& \sigma_{x} d y-\left(\sigma_{x}+d \sigma_{x}\right) d y-f_{x} d x \cdot d y=0 \\
& \sigma_{x} \int_{y}-(\sigma_{x}^{\pi}+d / \overbrace{x}) d y-f_{x} d x \cdot d \boldsymbol{J}=0 \Rightarrow-d \sigma_{x}-f_{x} d x=0
\end{aligned}
$$

Divide by $d x$ and write as $\frac{d \sigma_{x}}{d x}+f_{x}=0$

2a. PDE for 1D elasticity

Three conditions to satisfy:

* Compatibility of strains

$$
\epsilon_{x}=\frac{d u}{d x}
$$

\& Force balance

$$
\frac{d \sigma_{x}}{d x}+f_{x}=0
$$

* Constitutive law

2a. Constitutive law

Young's modulus, E ($\mathrm{Pa} a$ or N / m^{2})

Compatibility of strains:

$$
\begin{gathered}
\epsilon_{x}=\frac{d u}{d x} \\
\frac{d \sigma_{x}}{d x}=E \frac{d}{d x}\left(\frac{d u}{d x}\right)=E \frac{d^{2} u}{d x^{2}}
\end{gathered}
$$

Force balance:

$$
\begin{gathered}
\frac{d \sigma_{x}}{d x}+f_{x}=0 \\
E \frac{d^{2} u}{d x^{2}}+f_{x}=0
\end{gathered}
$$

2a. PDE for 1D elasticity

Three conditions to satisfy:

* Compatibility of strains

$$
\epsilon_{x}=\frac{d u}{d x}
$$

* Force balance

$$
\frac{d \sigma_{x}}{d x}+f_{x}=0
$$

* Constitutive law

$$
E \frac{d^{2} u}{d x^{2}}+f_{x}=0
$$

2a. (i) Simple 1D extension

End condition $u(0)=0$

$$
E \frac{d^{2} u}{d x^{2}}+f_{x}=0
$$

No body force: $f_{x}=0$

Integrate:

$$
\notin \frac{d^{2} u}{d x^{2}}=0 \quad \Longrightarrow \quad \frac{d^{2} u}{d x^{2}}=0
$$

$$
\frac{d u}{d x}=b \quad \Longrightarrow \quad u(x)=a+b x
$$

2a. (i) Simple 1D extension

End condition "bar is fixed at $x=0$

$$
u(0)=0
$$

Substitute in Eq 1:

$$
u(0)=a=0
$$

2a. (i) Simple 1D extension

A linear shape function is adequate in this case as the exact solution is linear

Differentiate Eq 1

$$
\frac{d u}{d x}=b
$$

At other end:

$$
\text { Stress, } \sigma_{x}=\frac{P}{A}=E \epsilon_{x}=E \frac{d u}{d x}=E b
$$

$$
\frac{P}{A}=E b \quad \Longrightarrow \quad b=\frac{P}{E A}
$$

Substitute in $E q$ 1: $\Longrightarrow u(x)=\frac{P}{E A} x$

2a. (ii) Self-weight (gravity)

Body force f_{x} is due to gravity
Total force $=m g$
Total force per unit volume $=\frac{m g}{V}$
Body force: $f_{x}=\rho g$
Density, $\rho=\frac{\text { mass }}{\text { Volume }}=\frac{m}{V}$
Substitute f_{x} in $E q$ 2: $\Longrightarrow E \frac{d^{2} u}{d x^{2}}+\rho g=0$

2a. (ii) Self-weight (gravity)

$$
E \frac{d^{2} u}{d x^{2}}+\rho g=0 \quad \Longrightarrow \quad \frac{d^{2} u}{d x^{2}}=-\frac{\rho g}{E}
$$

Integrate twice:

End condition

$$
u(0)=a=0
$$

$$
\frac{d u}{d x}=b-\frac{\rho g x}{E}
$$

$$
u(x)=a+b x-\frac{\rho g}{2 E} x^{2}
$$

Two End Conditions:
Top end:

$$
u(0)=0 \Rightarrow a=0
$$

2a. (ii) Self-weight (gravity)

$$
u(x)=a+b x-\frac{\rho g}{2 E} x^{2} \quad E q 3
$$

Bottom end:

$$
\begin{gathered}
\sigma_{x}=\frac{P}{A}=0=E \epsilon_{x}=E \frac{d u}{d x}=0 \\
\left.\frac{d u}{d x}\right|_{x=L}=0
\end{gathered}
$$

Differentiate Eq 3

$$
\begin{gathered}
\left.\frac{d u}{d x}\right|_{x=L}=0=b-\left.\frac{\rho g x}{E}\right|_{x=L} \\
b=\frac{\rho g L}{E} \\
\sigma_{x}=E b-\rho g x=E b-\rho g L=0
\end{gathered}
$$

2a. (ii) Self-weight (gravity)

$$
\underset{\sim}{\sim}
$$

$$
\begin{gathered}
a=0 \\
b=\frac{\rho g L}{E}
\end{gathered}
$$

Substitute a and b in:

$$
u(0)=a=0
$$

$$
u(x)=a+b x-\frac{\rho g}{2 E} x^{2}
$$

Zero stress at $x=L$

$$
u(x)=\frac{\rho g L}{E}\left(x-\frac{x^{2}}{2 L}\right)
$$

End dispacement:

$$
u(L)=\frac{\rho g L^{2}}{2 E}
$$

