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2a. Recap on Deformation — Brittle Materials from EG2111

Fracture

Elastic behaviour
to failure

Brittle fracture in mild steel
http://people.virginia.edu/~1z2n/mse209/Chapter8.pdf
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2a. Recap on Deformation — Ductile Materials 'l

. _ __ Oy
Total strain, € = ¢, + €, = - + €,
0}
Elastic Plastic

Fracture
Oy

Elastic and

plastic regions

http://people.virginia.edu/~lz2n/mse209/Chapter8.pdf

l Cup-and-cone fracture in Al
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2a. PDE for 1D elasticity

Unloaded

Loaded

X+ u

When a load is applied, a point at position x moves to position x + u.
The solution to this 1D elasticity problem is the displacement field u(x).
L S
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2a. PDE for 1D elasticity

Three conditions to satisfy:
s Compatibility of strains
** Force balance

«+ Constitutive law
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2a. Compatibility of strain (recap from EG2111)

In x-direction
Undeformed
Deformed
. - . du
« Normal strain in X-direction €, is €r = —
change in length over original length dx
L e
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2a. PDE for 1D elasticity

Three conditions to satisfy:

s Compatibility of strains

+* Force balance

++ Constitutive law
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2a. Force balance

Consider an infinitesimal element subject to an internal body

force per unit volume f,, e.g. an inertial force such as gravity.

dx
<€

O fr

>

el —

Force balance @ @

(O
dy

— 0, + do,

\ 4

o,dy — (o, + do,)dy — f,dx.dy =0

/{}f’—g/xh d/@dy—fxdx.ﬂ]= 0 = —do,—f,dx=0

Divide by dx and write as —

L dx
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2a. PDE for 1D elasticity

Three conditions to satisfy:

s Compatibility of strains

du
€. = —
' dx
++* Force balance
do +f,=0
dx .
++ Constitutive law
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2

Za. COnSUtUUVe |aW Young’s modulus’ E
/ (Pa or N /m?)
o, = E€,
doy  deéy
o _ dx  dx
Compatibility of strains: Iy
€Ex = E
do, d (du d?u
doc_pd (B _po
dx dx \dx dx?
Force balance:
dox +f,=0
dx fx -
d?u
EE-I_ fx — 0
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2a. PDE for 1D elasticity

Three conditions to satisfy:

s Compatibility of strains

du
© = Ux
+» Force balance
do +f,=0
dx .
«» Constitutive law
d*u
E —dxz +f,=0
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2a. (i) Simple 1D extension

Length, L
J > Load, P

—

Loaded

Young’'s modulus, E
Cross-sectional area, A

End condition u(0) = 0

d?u
EW‘F fx =0
No body force: f,, = 0
d*u 0 d*u 0
Integrate: dx? dx?
du

- - — + b UNIVERSITY OF
L - b — u(x) = a+ bx
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2a. (i) Simple 1D extension

Length, L
< J > Load, P

Loaded

u(x) =a+bx || Eq1

End condition “bar is fixedat x = 0
u(0) =0
Substitute in Eq 1:
u(0)=a=0
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2a. (i) Simple 1D extension

A linear shape function is
adequate in this case as
the exact solution is linear

Length, L

> Load, P

Loaded

Differentiate Eq 1

du_b
dx

At other end:

u(x) =a+ bx

Stress, g, = g = E€, = E% =Eb

P—Eb — b= P
A T EA

u(x) = L x

L Substitute in Eqg 1: =

L
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2a. (ii) Self-weight (gravity)

End condition u(0) = 0

dZ

u

Length, L

Body force f, is due to gravity

Total force = mg

. mg
Total force per unit volume = A

v Body force: f,, = pg
. _ mass _m
Density, p = Volume _ V
S 2 B B = F =0
| Substitute fin £q 2: dxz P9 = o e
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2a. (ii) Self-weight (gravity)

Edzu — d*u _ pg
axz T P9=0 iz E

End condition Integrate twice:

u(0) =a=0 du_b pgx
dx E

_ _ P9

u(x) =a+ bx T

Two End Conditions:

Top end:
u(0)=0= a=0
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2a. (ii) Self-weight (gravity)

P9
u(x) =a+ bx ——x Eq 3
(x) o
Bottom end:
X P 0=E E ¢ 0
O' —_ — = j— E jo— _—
= End condition A X dx
-% u(0)=a=0 du B
c dx B
4 Zero stressatx = L =t
Differentiate Eq 3
/ du . pgx
\d dx vl - E |-,
L
, _P9L

L

o, = Eb—pgx =Eb—pgL =0
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2a. (ii) Self-weight (gravity)

L

X
End condition

u(0)=a=0

Zero stressat x = L

A
1 pgl?
2E

Substitute a and b in:

a=0
_pgL
b="¢
_ _PY
u(x) =a+ bx Tk

L 2

End dispacement:

pgl
2E

2

u(l) =
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