

FEM and Elasticity Theory

Gebríl El-Fallah

EG3111 – Fíníte Element Analysis and Design

2a. Recap on Deformation – Brittle Materials from EG2111

Brittle fracture in mild steel http://people.virginia.edu/~lz2n/mse209/Chapter8.pdf

2a. Recap on Deformation – Ductile Materials

A

Cup-and-cone fracture in Al http://people.virginia.edu/~lz2n/mse209/Chapter8.pdf

FEM and Elasticity Theory

When a load is applied, a point at position x moves to position x + u.

The solution to this 1D elasticity problem is the displacement field u(x).

Three conditions to satisfy:

Compatibility of strains

✤ Force balance

2a. Compatibility of strain (recap from EG2111)

UNIVERSITY OF LEICESTER

Three conditions to satisfy:

Compatibility of strains

$$\epsilon_x = \frac{du}{dx}$$

Force balance

2a. Force balance

Consider an infinitesimal element subject to an internal body force per unit volume f_x , e.g. an inertial force such as gravity.

Three conditions to satisfy:

Compatibility of strains

$$\epsilon_x = \frac{du}{dx}$$

Force balance

$$\frac{d\sigma_x}{dx} + f_x = 0$$

FEM and Elasticity Theory

Young's modulus, E $(Pa \text{ or } N/m^2)$

Compatibility of strains:

2a. Constitutive law

 $\frac{d\sigma_x}{dx} = E \frac{d}{dx} \left(\frac{du}{dx}\right) = E \frac{d^2u}{dx^2}$

 $\epsilon_x = \frac{du}{dx}$

 $\sigma_{\chi} = E \epsilon_{\chi}$

 $\frac{d\sigma_x}{dx} = E \ \frac{d\epsilon_x}{dx}$

Force balance:

$$E\frac{d^2u}{dx^2} + f_x = 0$$

$$\frac{d\sigma_x}{dx} + f_x = 0$$

$$\frac{d\sigma_x}{dx} + f_x = 0$$

Three conditions to satisfy:

Compatibility of strains

$$\epsilon_x = \frac{au}{dx}$$

Force balance

$$\frac{d\sigma_x}{dx} + f_x = 0$$

$$E\frac{d^2u}{dx^2}+f_x=0$$

2a. (i) Simple 1D extension

2a. (i) Simple 1D extension

End condition "bar is fixed at x = 0

$$u(0)=0$$

Substitute in *Eq* 1:

$$u(0)=a=0$$

Length, L Length, L f_x End condition u(0) = 0 $E \frac{d^2 u}{dx^2} + f_x$ Body force f_x is due to Total force -mc

 $E \frac{d^2 u}{dx^2} + f_x = 0 \qquad Eq 2$ Body force f_x is due to gravity Total force = mgTotal force per unit volume $= \frac{mg}{V}$ Body force: $f_x = \rho g$ Density, $\rho = \frac{mass}{Volume} = \frac{m}{V}$

Substitute
$$f_x$$
 in Eq 2: $\implies E\frac{d^2u}{dx^2} + \rho g = 0$

$$E \frac{d^2 u}{dx^2} + \rho g = 0 \implies \frac{d^2 u}{dx^2} = -\frac{\rho g}{E}$$

Integrate twice:

$$\frac{du}{dx} = b - \frac{\rho g x}{E}$$

$$u(x) = a + bx - \frac{\rho g}{2E}x^2$$

Two End Conditions:

Top end:

$$u(0) = 0 \implies a = 0$$

$$u(x) = a + bx - \frac{\rho g}{2E} x^2 \quad Eq \ 3$$

Bottom end: $\sigma_x = \frac{P}{A} = 0 = E\epsilon_x = E\frac{du}{dx} = 0$ $\frac{du}{dx}\Big|_{x=L} = 0$

Differentiate Eq 3

 $\left. \frac{du}{dx} \right|_{x=L} = 0 = b - \frac{\rho g x}{E} \right|_{x=L}$

$$b = \frac{\rho g L}{E}$$

$$\sigma_x = Eb - \rho gx = Eb - \rho gL = 0$$

